Theory of convergence for Riemannian orbifolds
نویسندگان
چکیده
منابع مشابه
Learning in Riemannian Orbifolds
Learning in Riemannian orbifolds is motivated by existing machine learning algorithms that directly operate on finite combinatorial structures such as point patterns, trees, and graphs. These methods, however, lack statistical justification. This contribution derives consistency results for learning problems in structured domains and thereby generalizes learning in vector spaces and manifolds.
متن کاملM/F theory orbifolds
We consider M-theory on (T ×R)/Zn with M5 branes wrapped on R2. One can probe this background with M5 branes wrapped on T2. The theories on the probes provide many new examples of N = 2 field theories without Lagrangian description. All these theories have Coulomb branches, and we find the corresponding SeibergWitten curves. The exact solution is encoded in a Hitchin system on an orbifolded tor...
متن کاملClosed Geodesics in Compact Riemannian Good Orbifolds and Horizontal Periodic Geodesics of Riemannian Foliations
In this paper we prove the existence of closed geodesics in certain types of compact Riemannian good orbifolds. This gives us an elementary alternative proof of a result due to Guruprasad and Haefliger. In addition, we prove some results about horizontal periodic geodesics of Riemannian foliations and stress the relation between them and closed geodesics in Riemannian orbifolds. In particular w...
متن کاملA Convergence Theorem for Riemannian Submanifolds
In this paper we study the convergence of Riemannian submanifolds. In particular, we prove that any sequence of closed submanifolds with bounded normal curvature and volume in a closed Riemannian manifold subconverge to a closed submanifold in the C1 ,Q topology. We also obtain some applications to irreducible homogeneous manifolds and pseudo-holomorphic curves in symplectic manifolds.
متن کاملConvergence Theorems in Riemannian Geometry
This is a survey on the convergence theory developed rst by Cheeger and Gromov. In their theory one is concerned with the compactness of the class of riemannian manifolds with bounded curvature and lower bound on the injectivity radius. We explain and give proofs of almost all the major results, including Anderson's generalizations to the case where all one has is bounded Ricci curvature. The e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Japanese journal of mathematics. New series
سال: 1986
ISSN: 0289-2316,1861-3624
DOI: 10.4099/math1924.12.121